FacebookTwitterFlickrYoutuberss

Suricata-debian.yaml

From Zentyal Linux Small Business Server
Jump to: navigation, search
%YAML 1.1
---

# Suricata configuration file. In addition to the comments describing all
# options in this file, full documentation can be found at:
# https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricatayaml


# Number of packets allowed to be processed simultaneously.  Default is a
# conservative 50. a higher number will make sure CPU's/CPU cores will be
# more easily kept busy, but will negatively impact caching.
#
# If you are using the CUDA pattern matcher (b2g_cuda below), different rules
# apply. In that case try something like 4000 or more. This is because the CUDA
# pattern matcher scans many packets in parallel.
#max-pending-packets: 50

# Runmode custom mode the engine should run in.  Please check --list-runmodes
# to get the runmode custom modes that can be used here for a particular runmode.
#runmode: auto

# Preallocated size for packet. Default is 1514 which is the classical
# size for pcap on ethernet. You should adjust this value to the highest
# packet size (MTU + hardware header) on your system.
#default-packet-size: 1514

# Set the order of alerts bassed on actions
# The default order is pass, drop, reject, alert
action-order:
  - pass
  - alert
  - drop
  - reject

# The default logging directory.  Any log or output file will be
# placed here if its not specified with a full path name.  This can be
# overridden with the -l command line parameter.
default-log-dir: /var/log/suricata

# Configure the type of alert (and other) logging you would like.
outputs:

  # a line based alerts log similar to Snort's fast.log
  - fast:
      enabled: yes
      filename: fast.log
      append: yes

  # alert output for use with Barnyard2
  - unified2-alert:
      enabled: yes
      filename: unified2.alert

      # Limit in MB.
      #limit: 32

  # a line based log of HTTP requests (no alerts)
  - http-log:
      enabled: yes
      filename: http.log
      append: yes
      #extended: yes # enable this for extended logging information

  # a line based log to used with pcap file study.
  # this module is dedicated to offline pcap parsing (empty output
  # if used with an other kind of input). It can interoperate with
  # pcap parser like wireshark via the suriwire plugin.
  - pcap-info:
      enabled: no

  # Packet log... log packets in pcap format. 2 modes of operation: "normal"
  # and "sguil".
  #
  # In normal mode a pcap file "filename" is created in the default-log-dir,
  # or are as specified by "dir". In Sguil mode "dir" indicates the base directory.
  # In this base dir the pcaps are created in th directory structure Sguil expects:
  #
  # $sguil_base_dir/YYYY-MM-DD/$filename.<timestamp>
  #
  # By default all packets are logged except:
  # - TCP streams beyond stream.reassembly.depth
  # - encrypted streams after the key exchange
  #
  - pcap-log:
      enabled:  no
      filename: log.pcap

      # Limit in MB.
      limit: 1000

      # If set to a value will enable ring buffer mode. Will keep Maximum of "max_files" of size "limit"
      max_files: 2000

      mode: normal # normal or sguil.
      #dir: /nsm_data/
      #ts_format: usec # sec or usec second format (default) is filename.sec usec is filename.sec.usec
      use_stream_depth: no #If set to "yes" packets seen after reaching stream inspection depth are ignored. "no" logs all packets

  # a full alerts log containing much information for signature writers
  # or for investigating suspected false positives.
  - alert-debug:
      enabled: no
      filename: alert-debug.log
      append: yes

  # alert output to prelude (http://www.prelude-technologies.com/) only
  # available if Suricata has been compiled with --enable-prelude
  - alert-prelude:
      enabled: no
      profile: suricata
      log_packet_content: no
      log_packet_header: yes

  # Stats.log contains data from various counters of the suricata engine.
  # The interval field (in seconds) tells after how long output will be written
  # on the log file.
  - stats:
      enabled: yes
      filename: stats.log
      interval: 8

  # a line based alerts log similar to fast.log into syslog
  - syslog:
      enabled: no
      # reported identity to syslog. If ommited the program name (usually
      # suricata) will be used.
      #identity: "suricata"
      facility: local5
      #level: Info ## possible levels: Emergency, Alert, Critical,
                   ## Error, Warning, Notice, Info, Debug
  # a line based information for dropped packet
  - drop:
      enabled: yes
      filename: drop.log
      append: yes


# When running in NFQ inline mode, it is possible to use a simulated
# non-terminal NFQUEUE verdict.
# This permit to do send all needed packet to suricata via this a rule:
#        iptables -I FORWARD -m mark ! --mark $MARK/$MASK -j NFQUEUE
# And below, you can have your standard filtering ruleset. To activate
# this mode, you need to set mode to 'repeat'
# If you want packet to be sent to another queue after an ACCEPT decision
# set mode to 'route' and set next_queue value.
nfq:
  mode: repeat
  repeat_mark: 65536
  repeat_mask: 65536
#  route_queue: 2

# af-packet support
# Set threads to > 1 to use PACKET_FANOUT support
af-packet:
  - interface: eth0
    # Number of receive threads (>1 will enable experimental flow pinned
    # runmode)
    threads: 1
    # Default clusterid.  AF_PACKET will load balance packets based on flow.
    # All threads/processes that will participate need to have the same
    # clusterid.
    cluster-id: 99
    # Default AF_PACKET cluster type. AF_PACKET can load balance per flow or per hash.
    # This is only supported for Linux kernel > 3.1
    # possible value are:
    #  * cluster_round_robin: round robin load balancing
    #  * cluster_flow: all packets of a given flow are send to the same socket
    #  * cluster_cpu: all packets treated in kernel by a CPU are send to the same socket
    cluster-type: cluster_round_robin
    # In some fragmentation case, the hash can not be computed. If "defrag" is set
    # to yes, the kernel will do the needed defragmentation before sending the packets.
    defrag: yes
    # recv buffer size, increase value could improve performance
    # buffer-size: 32768
    # Set to yes to disable promiscuous mode
    # disable-promisc: no
  - interface: eth1
    threads: 1
    cluster-id: 98
    cluster-type: cluster_round_robin
    defrag: yes
    # buffer-size: 32768
    # disable-promisc: no

defrag:
  max-frags: 65535
  prealloc: yes
  timeout: 60

# When run with the option --engine-analysis, the engine will read each of
# the parameters below, and print reports for each of the enabled sections
# and exit.  The reports are printed to a file in the default log dir
# given by the parameter "default-log-dir", with engine reporting
# subsection below printing reports in its own report file.
engine-analysis:
  # enables printing reports for fast-pattern for every rule.
  rules-fast-pattern: yes

#recursion and match limits for PCRE where supported
pcre:
  match-limit: 3500
  match-limit-recursion: 1500

# You can specify a threshold config file by setting "threshold-file"
# to the path of the threshold config file:
# threshold-file: /etc/suricata/threshold.config

# The detection engine builds internal groups of signatures. The engine
# allow us to specify the profile to use for them, to manage memory on an
# efficient way keeping a good performance. For the profile keyword you
# can use the words "low", "medium", "high" or "custom". If you use custom
# make sure to define the values at "- custom-values" as your convenience.
# Usually you would prefer medium/high/low.
#
# "sgh mpm-context", indicates how the staging should allot mpm contexts for
# the signature groups.  "single" indicates the use of a single context for
# all the signature group heads.  "full" indicates a mpm_context for each
# group head.  "auto" lets the engine decide the distribution of contexts
# based on the information the engine gathers on the patterns from each
# group head.
#
# The option inspection_recursion_limit is used to limit the recursive calls
# in the content inspection code.  For certain payload-sig combinations, we
# might end up taking too much time in the content inspection code.
# If the argument specified is 0, the engine uses an internally defined
# default limit.  On not specifying a value, we use no limits on the recursion.
detect-engine:
  - profile: medium
  - custom-values:
      toclient_src_groups: 2
      toclient_dst_groups: 2
      toclient_sp_groups: 2
      toclient_dp_groups: 3
      toserver_src_groups: 2
      toserver_dst_groups: 4
      toserver_sp_groups: 2
      toserver_dp_groups: 25
  - sgh-mpm-context: auto
  - inspection-recursion-limit: 3000

# Suricata is multi-threaded. Here the threading can be influenced.
threading:
  # On some cpu's/architectures it is beneficial to tie individual threads
  # to specific CPU's/CPU cores. In this case all threads are tied to CPU0,
  # and each extra CPU/core has one "detect" thread.
  #
  # On Intel Core2 and Nehalem CPU's enabling this will degrade performance.
  #
  set_cpu_affinity: no
  # Tune cpu affinity of suricata threads. Each family of threads can be bound
  # on specific CPUs.
  cpu_affinity:
    - management_cpu_set:
        cpu: [ 0 ]  # include only these cpus in affinity settings
    - receive_cpu_set:
        cpu: [ 0 ]  # include only these cpus in affinity settings
    - decode_cpu_set:
        cpu: [ 0, 1 ]
        mode: "balanced"
    - stream_cpu_set:
        cpu: [ "0-1" ]
    - detect_cpu_set:
        cpu: [ "all" ]
        mode: "exclusive" # run detect threads in these cpus
        # Use explicitely 3 threads and don't compute number by using
        # detect_thread_ratio variable:
        # threads: 3
        prio:
          low: [ 0 ]
          medium: [ "1-2" ]
          high: [ 3 ]
          default: "medium"
    - verdict_cpu_set:
        cpu: [ 0 ]
        prio:
          default: "high"
    - reject_cpu_set:
        cpu: [ 0 ]
        prio:
          default: "low"
    - output_cpu_set:
        cpu: [ "all" ]
        prio:
           default: "medium"
  #
  # By default Suricata creates one "detect" thread per available CPU/CPU core.
  # This setting allows controlling this behaviour. A ratio setting of 2 will
  # create 2 detect threads for each CPU/CPU core. So for a dual core CPU this
  # will result in 4 detect threads. If values below 1 are used, less threads
  # are created. So on a dual core CPU a setting of 0.5 results in 1 detect
  # thread being created. Regardless of the setting at a minimum 1 detect
  # thread will always be created.
  #
  detect_thread_ratio: 1.5

# Cuda configuration.
cuda:
  # The "mpm" profile.  On not specifying any of these parameters, the engine's
  # internal default values are used, which are same as the ones specified here.
  - mpm:
      # Threshold limit for no of packets buffered to the GPU.  Once we hit this
      # limit, we pass the buffer to the gpu.
      packet_buffer_limit: 2400
      # The maximum length for a packet that we would buffer to the gpu.
      # Anything over this is MPM'ed on the CPU.  All entries > 0 are valid.
      packet_size_limit: 1500
      # No of packet buffers we initialize.  All entries > 0 are valid.
      packet_buffers: 10
      # The timeout limit for batching of packets in secs.  If we don't fill the
      # buffer within this timeout limit, we pass the currently filled buffer to the gpu.
      # All entries > 0 are valid.
      batching_timeout: 1
      # Specifies whether to use page_locked memory whereever possible.  Accepted values
      # are "enabled" and "disabled".
      page_locked: enabled
      # The device to use for the mpm.  Currently we don't support load balancing
      # on multiple gpus.  In case you have multiple devices on your system, you
      # can specify the device to use, using this conf.  By default we hold 0, to
      # specify the first device cuda sees.  To find out device_id associated with
      # the card(s) on the system run "suricata --list-cuda-cards".
      device_id: 0
      # No of Cuda streams used for asynchronous processing. All values > 0 are valid.
      # For this option you need a device with Compute Capability > 1.0 and
      # page_locked enabled to have any effect.
      cuda_streams: 2

# Select the multi pattern algorithm you want to run for scan/search the
# in the engine. The supported algorithms are b2g, b2gc, b2gm, b3g, wumanber,
# ac and ac-gfbs.
#
# The mpm you choose also decides the distribution of mpm contexts for
# signature groups, specified by the conf - "detect-engine.sgh_mpm_context".
# Selecting "ac" as the mpm would require "detect-engine.sgh_mpm_context"
# to be set to "single", because of ac's memory requirements, unless the
# ruleset is small enough to fit in one's memory, in which case one can
# use "full" with "ac".  Rest of the mpms can be run in "full" mode.
#
# There is also a CUDA pattern matcher (only available if Suricata was
# compiled with --enable-cuda: b2g_cuda. Make sure to update your
# max-pending-packets setting above as well if you use b2g_cuda.

mpm-algo: ac

# The memory settings for hash size of these algorithms can vary from lowest
# (2048) - low (4096) - medium (8192) - high (16384) - higher (32768) - max
# (65536). The bloomfilter sizes of these algorithms can vary from low (512) -
# medium (1024) - high (2048).
#
# For B2g/B3g algorithms, there is a support for two different scan/search
# algorithms. For B2g the scan algorithms are B2gScan & B2gScanBNDMq, and
# search algorithms are B2gSearch & B2gSearchBNDMq. For B3g scan algorithms
# are B3gScan & B3gScanBNDMq, and search algorithms are B3gSearch &
# B3gSearchBNDMq.
#
# For B2g the different scan/search algorithms and, hash and bloom
# filter size settings. For B3g the different scan/search algorithms and, hash
# and bloom filter size settings. For wumanber the hash and bloom filter size
# settings.

pattern-matcher:
  - b2gc:
      search_algo: B2gSearchBNDMq
      hash_size: low
      bf_size: medium
  - b2gm:
      search_algo: B2gSearchBNDMq
      hash_size: low
      bf_size: medium
  - b2g:
      search_algo: B2gSearchBNDMq
      hash_size: low
      bf_size: medium
  - b3g:
      search_algo: B3gSearchBNDMq
      hash_size: low
      bf_size: medium
  - wumanber:
      hash_size: low
      bf_size: medium

# Flow settings:
# By default, the reserved memory (memcap) for flows is 32MB. This is the limit
# for flow allocation inside the engine. You can change this value to allow
# more memory usage for flows.
# The hash_size determine the size of the hash used to identify flows inside
# the engine, and by default the value is 65536.
# At the startup, the engine can preallocate a number of flows, to get a better
# performance. The number of flows preallocated is 10000 by default.
# emergency_recovery is the percentage of flows that the engine need to
# prune before unsetting the emergency state. The emergency state is activated
# when the memcap limit is reached, allowing to create new flows, but
# prunning them with the emergency timeouts (they are defined below).
# If the memcap is reached, the engine will try to prune prune_flows
# with the default timeouts. If it doens't find a flow to prune, it will set
# the emergency bit and it will try again with more agressive timeouts.
# If that doesn't work, then it will try to kill the last time seen flows
# not in use.

flow:
  memcap: 33554432
  hash_size: 65536
  prealloc: 10000
  emergency_recovery: 30
  prune_flows: 5

# Specific timeouts for flows. Here you can specify the timeouts that the
# active flows will wait to transit from the current state to another, on each
# protocol. The value of "new" determine the seconds to wait after a hanshake or
# stream startup before the engine free the data of that flow it doesn't
# change the state to established (usually if we don't receive more packets
# of that flow). The value of "established" is the amount of
# seconds that the engine will wait to free the flow if it spend that amount
# without receiving new packets or closing the connection. "closed" is the
# amount of time to wait after a flow is closed (usually zero).
#
# There's an emergency mode that will become active under attack circumstances,
# making the engine to check flow status faster. This configuration variables
# use the prefix "emergency_" and work similar as the normal ones.
# Some timeouts doesn't apply to all the protocols, like "closed", for udp and
# icmp.

flow-timeouts:

  default:
    new: 30
    established: 300
    closed: 0
    emergency_new: 10
    emergency_established: 100
    emergency_closed: 0
  tcp:
    new: 60
    established: 3600
    closed: 120
    emergency_new: 10
    emergency_established: 300
    emergency_closed: 20
  udp:
    new: 30
    established: 300
    emergency_new: 10
    emergency_established: 100
  icmp:
    new: 30
    established: 300
    emergency_new: 10
    emergency_established: 100

# Stream engine settings. Here the TCP stream tracking and reaasembly
# engine is configured.
#
# stream:
#   memcap: 33554432            # 32mb tcp session memcap
#   checksum_validation: yes    # To validate the checksum of received
#                               # packet. If csum validation is specified as
#                               # "yes", then packet with invalid csum will not
#                               # be processed by the engine stream/app layer.
#                               # Warning: locally generated trafic can be
#                               # generated without checksum due to hardware offload
#                               # of checksum
#   max_sessions: 262144        # 256k concurrent sessions
#   prealloc_sessions: 32768    # 32k sessions prealloc'd
#   midstream: false            # don't allow midstream session pickups
#   async_oneside: false        # don't enable async stream handling
#   inline: no                  # stream inline mode
#
#   reassembly:
#     memcap: 67108864          # 64mb tcp reassembly memcap
#     depth: 1048576            # 1 MB reassembly depth
#     toserver_chunk_size: 2560 # inspect raw stream in chunks of at least
#                               # this size
#     toclient_chunk_size: 2560 # inspect raw stream in chunks of at least
#                               # this size
stream:
  memcap: 33554432              # 32mb
  checksum_validation: yes      # reject wrong csums
  inline: no                    # no inline mode
  reassembly:
    memcap: 67108864            # 64mb for reassembly
    depth: 1048576              # reassemble 1mb into a stream
    toserver_chunk_size: 2560
    toclient_chunk_size: 2560


# Logging configuration.  This is not about logging IDS alerts, but
# IDS output about what its doing, errors, etc.
logging:

  # The default log level, can be overridden in an output section.
  # Note that debug level logging will only be emitted if Suricata was
  # compiled with the --enable-debug configure option.
  #
  # This value is overriden by the SC_LOG_LEVEL env var.
  default-log-level: info

  # The default output format.  Optional parameter, should default to
  # something reasonable if not provided.  Can be overriden in an
  # output section.  You can leave this out to get the default.
  #
  # This value is overriden by the SC_LOG_FORMAT env var.
  #default-log-format: "[%i] %t - (%f:%l) <%d> (%n) -- "

  # A regex to filter output.  Can be overridden in an output section.
  # Defaults to empty (no filter).
  #
  # This value is overriden by the SC_LOG_OP_FILTER env var.
  default-output-filter:

  # Define your logging outputs.  If none are defined, or they are all
  # disabled you will get the default - console output.
  outputs:
  - console:
      enabled: yes
  - file:
      enabled: no
      filename: /var/log/suricata.log
  - syslog:
      enabled: no
      facility: local5
      format: "[%i] <%d> -- "

# PF_RING configuration. for use with native PF_RING support
# for more info see http://www.ntop.org/PF_RING.html
pfring:
  - interface: eth0
    # Number of receive threads (>1 will enable experimental flow pinned
    # runmode)
    threads: 1

    # Default interface we will listen on.
    interface: eth0

    # Default clusterid.  PF_RING will load balance packets based on flow.
    # All threads/processes that will participate need to have the same
    # clusterid.
    cluster-id: 99

    # Default PF_RING cluster type. PF_RING can load balance per flow or per hash.
    # This is only supported in versions of PF_RING > 4.1.1.
    cluster-type: cluster_round_robin
  # Second interface
  #- interface: eth1
  #  threads: 3
  #  cluster-id: 93
  #  cluster-type: cluster_flow

pcap:
  - interface: eth0
    #buffer-size: 32768
    #bpf-filter: "tcp and port 25"

# For FreeBSD ipfw(8) divert(4) support.
# Please make sure you have ipfw_load="YES" and ipdivert_load="YES"
# in /etc/loader.conf or kldload'ing the appropriate kernel modules.
# Additionally, you need to have an ipfw rule for the engine to see
# the packets from ipfw.  For Example:
#
#   ipfw add 100 divert 8000 ip from any to any
#
# The 8000 above should be the same number you passed on the command
# line, i.e. -d 8000
#
ipfw:

  # Reinject packets at the specified ipfw rule number.  This config
  # option is the ipfw rule number AT WHICH rule processing continues
  # in the ipfw processing system after the engine has finished
  # inspecting the packet for acceptance.  If no rule number is specified,
  # accepted packets are reinjected at the divert rule which they entered
  # and IPFW rule processing continues.  No check is done to verify
  # this will rule makes sense so care must be taken to avoid loops in ipfw.
  #
  ## The following example tells the engine to reinject packets
  # back into the ipfw firewall AT rule number 5500:
  #
  # ipfw-reinjection-rule-number: 5500

# Set the default rule path here to search for the files.
# if not set, it will look at the current working dir
default-rule-path: /etc/suricata/rules
rule-files:
- botcc.portgrouped.rules
- botcc.rules
- ciarmy.rules
- compromised.rules
- decoder-events.rules
- drop.rules
- dshield.rules
- emerging-activex.rules
- emerging-attack_response.rules
- emerging-chat.rules
- emerging-current_events.rules
- emerging-deleted.rules
- emerging-dns.rules
- emerging-dos.rules
- emerging-exploit.rules
- emerging-ftp.rules
- emerging-games.rules
- emerging-icmp.rules
- emerging-icmp_info.rules
- emerging-imap.rules
- emerging-inappropriate.rules
- emerging-info.rules
- emerging-malware.rules
- emerging-misc.rules
- emerging-mobile_malware.rules
- emerging-netbios.rules
- emerging-p2p.rules
- emerging-policy.rules
- emerging-pop3.rules
- emerging-rpc.rules
- emerging-scada.rules
- emerging-scan.rules
- emerging-shellcode.rules
- emerging-smtp.rules
- emerging-snmp.rules
- emerging-sql.rules
- emerging-telnet.rules
- emerging-tftp.rules
- emerging-trojan.rules
- emerging-user_agents.rules
- emerging-voip.rules
- emerging-web_client.rules
- emerging-web_server.rules
- emerging-web_specific_apps.rules
- emerging-worm.rules
- files.rules
- http-events.rules
- rbn-malvertisers.rules
- rbn.rules
- smtp-events.rules
- stream-events.rules
- tls-events.rules
- tor.rules


classification-file: /etc/suricata/rules/classification.config
reference-config-file: /etc/suricata/rules/reference.config

# Holds variables that would be used by the engine.
vars:

  # Holds the address group vars that would be passed in a Signature.
  # These would be retrieved during the Signature address parsing stage.
  address-groups:

    HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

    EXTERNAL_NET: any

    HTTP_SERVERS: "$HOME_NET"

    SMTP_SERVERS: "$HOME_NET"

    SQL_SERVERS: "$HOME_NET"

    DNS_SERVERS: "$HOME_NET"

    TELNET_SERVERS: "$HOME_NET"

    AIM_SERVERS: "$EXTERNAL_NET"

  # Holds the port group vars that would be passed in a Signature.
  # These would be retrieved during the Signature port parsing stage.
  port-groups:

    HTTP_PORTS: "80"

    SHELLCODE_PORTS: "!80"

    ORACLE_PORTS: 1521

    SSH_PORTS: 22

# Host specific policies for defragmentation and TCP stream
# reassembly.  The host OS lookup is done using a radix tree, just
# like a routing table so the most specific entry matches.
host-os-policy:
  # Make the default policy windows.
  windows: [0.0.0.0/0]
  bsd: []
  bsd_right: []
  old_linux: []
  linux: [10.0.0.0/8, 192.168.1.100, "8762:2352:6241:7245:E000:0000:0000:0000"]
  old_solaris: []
  solaris: ["::1"]
  hpux10: []
  hpux11: []
  irix: []
  macos: []
  vista: []
  windows2k3: []


# Limit for the maximum number of asn1 frames to decode (default 256)
asn1_max_frames: 256

###########################################################################
# Configure libhtp.
#
#
# default-config:       Used when no server-config matches
#   personality:        List of personalities used by default
#   request_body_limit: Limit reassembly of request body for inspection
#                       by http_client_body & pcre /P option.
#
# server-config:        List of server configurations to use if address matches
#   address:            List of ip addresses or networks for this block
#   personalitiy:       List of personalities used by this block
#   request_body_limit: Limit reassembly of request body for inspection
#                       by http_client_body & pcre /P option.
#
# Currently Available Personalities:
#   Minimal
#   Generic
#   IDS (default)
#   IIS_4_0
#   IIS_5_0
#   IIS_5_1
#   IIS_6_0
#   IIS_7_0
#   IIS_7_5
#   Apache
#   Apache_2_2
###########################################################################
libhtp:

   default-config:
     personality: IDS
     request_body_limit: 3072

   server-config:

     - apache:
         address: [192.168.1.0/24, 127.0.0.0/8, "::1"]
         personality: Apache_2_2
         request_body_limit: 4096

     - iis7:
         address:
           - 192.168.0.0/24
           - 192.168.10.0/24
         personality: IIS_7_0
         request_body_limit: 4096

# Profiling settings. Only effective if Suricata has been built with the
# the --enable-profiling configure flag.
#
profiling:

  # rule profiling
  rules:

    # Profiling can be disabled here, but it will still have a
    # performance impact if compiled in.
    enabled: yes
    filename: rule_perf.log
    append: yes

    # Sort options: ticks, avgticks, checks, matches, maxticks
    sort: avgticks

    # Limit the number of items printed at exit.
    limit: 100

  # packet profiling
  packets:

    # Profiling can be disabled here, but it will still have a
    # performance impact if compiled in.
    enabled: yes
    filename: packet_stats.log
    append: yes

    # per packet csv output
    csv:

      # Output can be disabled here, but it will still have a
      # performance impact if compiled in.
      enabled: no
      filename: packet_stats.csv
Personal tools
Namespaces

Variants
Actions

Zentyal Wiki

Zentyal Doc
Navigation
Toolbox